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EXPANSION AND ESTIMATION OF THE RANGE OF 
NONLINEAR FUNCTIONS 

S. M. RUMP 

ABSTRACT. Many verification algorithms use an expansion f(x) E f(i) + S- 
(x-i), f: Rn - Rn for x E X, where the set of matrices S is usually computed 
as a gradient or by means of slopes. In the following, an expansion scheme 
is described which frequently yields sharper inclusions for S. This allows also 
to compute sharper inclusions for the range of f over a domain. Roughly 
speaking, f has to be given by means of a computer program. The process 
of expanding f can then be fully automatized. The function f need not be 
differentiable. For locally convex or concave functions special improvements 
are described. Moreover, in contrast to other methods, x n X may be empty 
without implying large overestimations for S. This may be advantageous in 
practical applications. 

0. NOTATION 

We denote by MJR the set of real intervals 

X E MR ? X = [inf(X), sup(X)] = { x E R I inf(X) < x < sup(X) }. 
By EPT we denote the power set over a given set T, and we use the canonical 
embedding MJR C IPR. The set of n-dimensional interval vectors is denoted by IR2n, 
i.e., 

X E MRh ?> X={ (xi) E Rn |xXi } with Xhi E fR, I < i < n. 

Interval vectors are compact. Interval operations and power set operations are 
defined in the usual way. Details can be found in standard books on interval 
analysis, among others [10, 2, 11]. If not explicitly noted otherwise, all operations 
are power set operations. 

1. EXPANSION OF NONLINEAR FUNCTIONS 

A differentiable function f: D C Rn -- R can be locally expanded by its 
gradient. For x e D, X C D, and [g] E I[Rn with Vf (x U X) C [g] there holds 

(1.0) V x E X 3 g E [g]: f (X)-f () = gT . (X-i). 

Here, U denotes the convex hull, and Vf (x U X) denotes the range of Vf over 
x U X. The gradient, for real and for interval arguments, can be computed using 
automatic differentiation [4, 12]. This process is fully automatized. This approach 
has three disadvantages: 

(1) f needs to be differentiable, 
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(2) [g] expands f with respect to every x E x U X rather than with respect to 
some specific x E D, 

(3) x U X has to be used, enlarging [g] if x X X. 

Item (2) means that (1.0) still holds if x in (1.0) is replaced by any y E x U X. 
Item (3) expresses that, according to the n-dimensional Mean Value Theorem, for 
all x E X some ( E x U x exists with f(x) - f(i) = Vf(;) (x - x). Using 

[g] D Vf (iUX) assures (1.0). 
The three problems can be solved by means of so-called slopes. They have been 

introduced and described in [13, 5, 9, 11]. For another, very interesting application 
of slopes in the computation of inclusions for Peano functional, see the paper 
by Heindl [7]. In the following, we give some generalization and improvement for 
slopes. 

We start with a 1-dimensional function, and we will see that the approach easily 
extends to the n-dimensional case. The first steps very much follow the treatment 
in [11]. 

Definition 1. Let f: D C R -, R and X, X C D be given. The triple (f,) fr, fs) E 
IPR x IPR x IPR expands f in X with respect to X if 

V YEk X: y~) E fc I 

VxEX: f (X) E fr 

ViEX VxEX fs EUsf: f(X)-f(i)= fs (X-). 

Furthermore, the slope of f in X with respect to X is defined by 

SI (f ) :=Sl(f X, X) X=44()~ iE ~X) E X) z7& } 

For Theorem 3 we also need the following definition. If X, X C D both consist 
of a single point x, x E D, respectively, then sl(f) = (f (x) -f (i)) /(x - Y) provided 
x =A x. We define for x =# x, 

SI+ (f x) ijx) = Sr (f) Ix) x) = SI (f) x) x) = SI (of I) 5x) := Sl(f I x) x)v 

and for x = x, 

SI+ (f IY, ,X) lim ( ,+ O -f P) s (f, i, x):= lim f ?P+ ) - f(P) 

+ (ff () + O - f sl(fvx x :=lim 

This definition is only needed for convex or concave f . The values for sl, sI are 
allowed in [-oc, +oo]. 

Instead of (fe, fr, fs) we sometimes write (fc(k, X), fr(X, X), fs(X, X)) in or- 

der to emphasize the dependence on X and X. Clearly, if (f,) fr, fs) expands f in 
X with respect to X, then 

(X) Cfcl ) (X) Cfrl Sl(fj X)X) C s) 

and (f(X)I f(X)I sl(fXIX)) expands f in X with respect to X. 
The following theorem can essentially be found in [11]. Note that intersection 

for multiplication and division is possible because we are in the 1-dimensional case. 
This is no longer possible in n dimensions because the slope is no longer unique. 
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Theorem 2. A constant c E R and f (x) _ x is expanded in X C R with respect to 

X C R by (c, c, O) and (X, X, 1), respectively. Let f, g: D C R - R andX X C D 

be given. If (f, fr, f,), (gc, gr, gs) expand f, g in X with respect to X, respectively, 
then (he, hr, h,) expands f o g for o e {+,-,, /} in X with respect to X, where 

hc :=fc o gc, hr := fr o gr foro E {+,-,, /}, 

hs :=fs gs for E 

S (fs gr + fc gs) n (fr gs + fs * gc) for o =, 

hs :(fs-hc gs)/gr n (fs-hr gs)/gc for o = /, 

provided no division by zero occurs. If g(fc U fr) C D, the same holds for h = g(f) 
with 

hc :g(fc), hr := g(fr) and 

hs := sl(g, fc, fr) fs. 

These statements remain valid if hr is replaced by 

hr := hr n {hc +hs (X-X)}. 

The proof is given for f g, f/g, and g(f). The other cases follow similarly. 
Computation of hc and hr is obvious. For h = f g we have 

flx) g(x) f{f (x().() g - f ()= (xx) [ x(x-X)] Cf(Tx (x) 

Hnesl (f g) C jYr+fEu adthrfoesl( g js g )~ rus+fsY 

For fixed but arbitrary x E X, x E X there exist fs E fs, gs E gs with 

f(x) g(x)-f(x) [f() = [f(x) + fS (X-x)] [g(x) +SX (x-x)]-f x) 1 gx) 

= xs g)(x) + f(x) gS] (x-x). 

Hence sI ( f g) C fs gr + fc gs and therefore sI ( f g) = sI (g f )C fr gs + fs gc 
For fixed but arbitrary x E X, x E X there exist fs E fs, gs E gs with 

f (x) f () _[f () + fSg (x- x)] -g(x)- (fx) - [g(x) + s (x x )] 

g(x) g(y) g(x) g(y) 

fS (g(x) - s (x-x))(f (x)- fS (x-x) gs 

g(x) gP)) 

{ 55s g (xZ) gs } Y _ 

proving the second part of the formula for hs for division. The first part can be 
derived similarly, cf. also [11]. For h = g(f) we have 

sI (h) ={ - )) Yg )) [ XI x EX XI X- 5k) - XE ,xEx 

For f (x) =h f (x) we have 

g(f (x)) -g(f ()) - g(f (x)) g(f ()) f (x) f () E s- (g f f)) f 
x-x f(x) -f() x-x 

If f (x) = f (x) for x 74 x, then 0 E fs, and this yields sl(g(f)) C sl(g, fc, fr) fs. 
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The intersection for hr in Theorem 2 combines naive interval evaluation 
with centered forms. For example, (X, X, 1) expands the function f(x) x in 
X with respect to X. Defining g(x) := x - x, we obtain g(X) C X -X = 

[- diam(X), +diam(X)] by naive interval calculation. The intersection gr 

gr n (gc + gs (X-x)) yields gr = gr n (gc + o (X-X)) = gc = O. 
It has already been observed in [11] that sl (g, fc, fr) can be replaced by g'(fc U fr) 

when g is differentiable. The disadvantage is that this set may be large. It covers 
sl (g, fc U fr, fc U fr), thus expanding g in fc U fr with respect to each x E fc U fr. 

In special cases, sl (g, fc, fr) can be computed explicitly. For example, let g(x) = X. 
Then for every y E fc, Y E fr, y =A there holds 

_ _ _ _ _ g -Y) y 2 
_ 

=+y + 
SI 5(g, fc, fr) C fc + fr. 

y(. -Y 

For g(x) = a we have 

(1.2) 

(Y) 
g(Y 

WY 
4=( + 

VY-) XSI (g, fc, fir) C (gc + gr) 

A similar principle can be extended to locally convex or concave functions. This 
may sharpen the inclusion interval for slopes significantly. 

Theorem 3. Let f: D C R -R, X,X C D be given and (fc, fr, fs) E PIRxIPIRx 

PR, expanding f in X with respect to X. Let g: D' C R I X, fc U fr C D' be 
given and define hc := g(fc), hr := g(fr). If g is convex on fc U fr, then (he, hr, h,) 
expands g(f) on X with respect to X provided 

(1.3) h, D sI+ (g, inf (fc), inf (fr)), SI (g,sup(fc),sup(fr)) f 

If g is concave on fc U fr, then the same holds provided 

(1.4) hs D [-I (g, sup(fc),sup(fr)), SI (ginf(fc),inf(fr))] sf. 

Proof. Let g be convex on fc U fr. We prove that sl (g, Yi, Y2) increases when Yi or 

Y2 increase. Let yi < Y < Y2 with y = ay, +(1-ca)Y2, 0 < a < 1, Y1, Y, Y2 E fc U fr. 
Then, owing to convexity, g(atyi + (1 - c)Y2) < a0g(yi) + (1 - c)g(y2) and 

Y(Y2) - g(Yi) - (Y2) -9(Y) < g (Y2) - g(y) + (1-) )g(Y2) 9(Y2) - 9(Y) 
-ae <= 

Y2-Y1 Y2 Y Y2-Y Y2-Y 

We proceed similarly for Yi < Y2 < y. Thus, Sl (g, fc, fr) achieves its extreme 
values at the extremes of fc and fr, and this proves (1.3). Concavity is treated 
similarly. D 

Note that in the calculation of (1.3) and (1.4) only slopes of g for points, not 
for intervals, are necessary. Theorem 3 yields sharper slopes for many functions. 
Moreover, it extends the expansion principle to nondifferentiable functions. 

As an example, consider ex for X = {1} and X = [0.5, 1.5]. In the follow- 
ing table we compare a standard gradient evaluation Vf (x U X), the slope using 
sl (g, fc, fr) C g'(ffc U fr), and the slope computed by Theorem 3. Results are 
rounded to 4 figures. 
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TABLE 1. Expansions for X = {1}, X = [0.5, 1.5] 

Vf (X U X) standard slope new slope (Theorem 3) 
x2 [1,3] [1.5,2.5] [1.5,2.5] 

ex2 [1.284,28.46] [1.926,23.72] [2.869,13.54] 

Here we set X {mid(X) }. In practical applications, one cannot always ensure 

X C X unless extra function evaluations are necessary. If we take the same X = 

[0.5,1.5], but X = {2}, then Table 1 looks as follows. 

TABLE 2. Expansions for X = {2}, X = [0.5,1.5] 

Vf (X U X) standard slope new slope (Theorem 3) 
x2 [1,4] [2.5,3.5] [2.5,3.5] 

ex2 [1.284,218.4] [3.21,191.1] [35.54,90.22] 

In order to apply Theorems 2 and 3 to the n-dimensional case, we first generalize 
Definition I in the following way. 

Definition 4. Let F: R -- PR and X, X C D be given. The triple (Fe, Fr, Fs) E 

PR3 expands F in X with respect to X if 

VxEX: F(x) CFr, 
V x E X : F(x) C Fv 
V x EX V x E X V y E F() V y E F(x) 3 E F, y-y =F (x-x) 

Furthermore, the slope of F with respect to X and X is defined by 

sl (F) := sl (F,X,kX) : Y Y I y C F(X)I E F(Xk), x EX XI i x}. 

For simplicity of notation and formulation, we assume F to be defined on IR rather 
than on a subset D C R. A generalization of the following to functions being 
defined only on a subset of R is straightforward. 

As before, we have F(X) C Fc, F(X) C Fr and sl (F, X, X) C Fs and (F(X), 

F(X), sl (F, X, X)) expands F in X with respect to X. 

Let f: Rn --1 R and let X, X E ITRn be given. We need Definition 4 to apply it 
to the following "component functions" Fk : R ---I PR defined by 

Fk(y) := f(Xi,... IXk-l1,YXk+l,- ,Xn) for I < k < n. 

Then (Fk(kk), Fk(Xk), sl (Fk, Xk, Xk)) expands Fk in Xk with respect to Xk, 
and by induction it follows for x E X, x E X and 0 < k < n that 

k 

f (Xli I Xki Yk+1i .. * i n) C f (i) + E sl (FV I V X7J)Xv (X7J-X7J) 
V=1 

Of course, Definition 4 could replace 1 at the beginning; we separated them for 
didactical reasons. Theorems 2 and 3 can be adapted to Definition 4 and applied to 
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every component function Fk in a straightforward way. In the practical application, 
the vector V = (Vo,... , V,) eE 1UR' with 

(1.5) f(X1,... ,XkXk+l,... ,Xn) C Vk for O < k < n 
is stored and 

F (Xk) C Vk-1 and F k(Xk) C Vk 

is used. The difference to Neumaier's approach [11] is that he stores (fM, fr, fi) E 
fTR x 1ff x IJRn with f(X) C ft, f(X) C fr and corresponding slope. In the approach 
described above, more information is stored. This is very much in the spirit of 
Hansen [6], where the concept of componentwise application of the n-dimensional 
Mean Value Theorem is used to improve gradients; see also [1]. 

2. IMPLEMENTATION AND EXAMPLES 

In the following we give some remarks regarding implementation and computa- 
tional results. We use a Pascal-like notation together with an operator concept. 
In fact, it is the notation of TPX (Turbo Pascal eXtended, [8], a precompiler for 
Turbo Pascal offering these and other features). We use the data structure 

expansion = record 
r: array[O..n] of interval; 
s: array[L..n] of interval; 

end; 
The constants X, X E IJR are fixed and globally available. X is denoted by Xs. 

Then f.r represents the range vector V as in (1.5), and for all i E X, x E X we 
have 

f(xl,... , k, Xk+1, ... ,in)Ef.r[k] for O<k<n, 

n 
f(x) E f() +E f-s[i] (xi -i). 

i=1 

As an example, we display the algorithm for the multiplication operator. 

ALGORITHM 2.1. Multiplication for expansions 

function mul(f, g: expansion): expansion implements * 
var i : integer; R: interval; 
begin 

R:= fr[O] *g.r[O]; mul.r[O] := R; 
for i :=l to n do begin 

mul.s[i] intersection(f.r[i] * g.s[i] + g.r[i-1] * f.s[i], 
g.r[i] * f.s[i] + f.r[i - 1] *gs[i]); 

R := R + mul.s[i] * (X[i] - Xs[i]); 
mul.r[i] := intersection(f.r[i] * g.r[i], R); 

end; 
end {mul}; 

The procedure gives enough detail for an implementation of basic operators for 
the computation of slope expansions. Note that all operations are interval opera- 
tions. The main point is that replacing the data type double in some function by 
expansion creates automatically the slope expansion. This process is fully autom- 
atized. 
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We close the implementation remarks by giving a procedure for the absolute 
value, a convex but not everywhere differentiable function. It implements Theo- 
rem 3. We assume the function abs to be given for interval arguments, that is 
abs(X) := { jxj I x E X }. 

ALGORITHM 2.2. Slope expansion of absolute value 

function abs (f: expansion) : expansion; 
var i: integer; R: interval; SI, Su: double; 
begin 

R:= abs(f.r[O]); abs.r[O] := R; 
for i :=1 to n do begin 

if f.r[i].inf = f.r[i - 1].inf then 
if f.r[i].inf >= 0.0 then Si := 1.0 else Si :=-1.0 

else 
SI:= (abs(f.r[i].inf) -abs(f.r[i-1].inf)/(f.r[i].inf -f.r[i-1].inf); 

if f.r[i].sup = f.r[i - 1].sup then 
if f.r[i].sup <= 0.0 then Su := -1.0 else Su := 1.0 

else 
Su:= (abs(f-r[i].sup) - abs(f.r[i - 1].sup)/ 

(f.r[i].sup - f.r[i - 1].sup); 
abs.s[i] := hull(Si, Su) * f.s[i]; 
R:= R + abs.s[i] * (X[i] - Xs[i]); 
abs.r[i] := intersection (abs(f.r[i]), R); 

end; 
end {abs}; 

For the implementation of nonglobally convex or concave functions, case distinc- 
tions for local convexity and/or local concavity can be used. 

As an example which cannot be treated by gradients, consider g(x) := jxl for 
X := [-1,1] and Y := 2. The computation of the slope according to Theorem 3 is 
fully automatized. Algorithm 2.2 yields 

f(x) = jxj (2, [0,1], [I 1]) expands fin X with respect to x. 
3, 

Applying Theorem 3 then gives 

sl(g, f fr) C [[V - 1, ] 

and (1.4) yields 

g(x) = Vjxj X (V [0,1], [-(V- 1), -V2]) expands g in X with respect to Y. 
3 2 

In this example, the computed slope is even sharp. A graph of the function g 
together with the slopes is displayed below (Figure 1). 

Next we compare the following three methods for expanding a function: 

Method 1: Gradients Vf 
Method 2: Slopes according to [11] 
Method 3: Slopes as described above 
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FIGURE 1. g(X) := lxi with slopes for X [-1, 1] and x := 2 

As an example for comparing these methods, we use f JR2 , R with 

(2.1) f(X, y) := eXY -x for X = [-1,1], Y = [0,2], X = 0, Y = 1. 

Method 1 with automatic differentiation yields 

TABLE 2.1. Method 1 for (2.1) 

zi (XI Y) Vzi (X, Y) 
Z1=X [-1,1] 1 0 
Z2 =Y [0,2] 0 1 
Z3 = Z1 *- Z2 [[-2,2] [0,2] [-1,1] 
Z4 - eZ3 [0.135, 7.390] [0, 14.779] [-7.390, 7.390] 
Z5 = Z4 - ZI [-0.865, 8.390] [-1, 13.779] [-7.390, 7.390] 

The final value Z5 gives an interval containing the range of f on X x Y. Slopes 
according to [11] compute as follows: 

TABLE 2.2. Method 2 (slopes) for (2.1) 

(zi)"c (Zi)r (ZO., 

Z1=X 0 [-1,1] 1 0 
Z2 = Y 1 [0,2] 0 1 

Z3 = ZI - Z2 0 [-2, 2] 1 [-1,1] 
Z4= e 1 [0.135, 7.390] [0.135, 7.390] [-7.390, 7.390] 
Z5 = Z4 - Zi 1 [-0.865, 8.390] [-0.865, 6.390] [-7.390, 7.390] 
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The results of Table 2.2 are exactly the same for the componentwise definition 
of gradients according to Hansen [6]. The estimation for the range f (X, Y) is the 
same as for Method 1. It cannot be improved by using 

f(XY) C {ff + fs (X-XY-Y) } 0 frn 
Finally, we give the results for the new Method 3, using Theorems 2 and 3. 

TABLE 2.3. Method 3 for (2.1) 

(R~ij)o (R~ij) I (R~i )2 (Szi) 1 (Szi )2 
Zi =X 0 [-1, 1] [-1, 1] 1 0 

Z2 = Y 1 1 [0,2] 0 1 

Z3 = Z1 * Z2 0 [-1, 1] [-2,2] 1 [-1, 1] 
Z4= eZ3 1 [0.367, 2.719] [0.135, 7.390] [0.633, 1.719] [-4.671, 4.671] 
Z5 = Z4 - Z1 1 [0.281, 1.719] [-0.865, 6.390] [-0.367, 0.719] [-4.671, 4.671] 

Method 3 stores more information and computes better inclusions. The last line 
of Table 2.3 shows a sharper inclusion [-0.865, 6.390] for the range f (X, Y) and 
sharper slopes. The true range is [0, 6.390], thus the upper bound is already sharp. 

Slope expansions for noncontinuous functions like signum(x) or Lxj := 
max{ k E Z I k < x } according to Theorems 2 and 3 can easily be implemented 
along the lines of Algorithms 2.1 and 2.2. 

The following example is taken from Broyden's function [3]: 

f(xi, X2) := (1 - 1/(47r)) . (e2z1x- e) + X2 e,/r - 2exi. 

Setting X = (0.5, ir) and X := X [1 - 0.3,1 + 0.3], we obtain the following ranges 
computed by Methods 1, 2, and 3, the latter without and with using Theorem 3. 

method range f (X) 
Method 1 [-3.019, +3.947] 
Method 2 [-3.019, +3.947] 
Method 3 without Theorem 3 [-1.364, +1.364] 
Method 3 with Theorem 3 [-0.761, +0.762] 

We summarize the main properties of our expansion scheme: 

* The method is applicable to rather general, nondifferentiable and even non- 
continuous functions and can be used in an automatized way similar to auto- 
matic differentiation. 

* The quality of the inclusions is improved through various intersections and 
special treatment of locally convex or concave functions. 

* In practical applications, expansions may be necessary with respect to some 

x E RI not exactly representable on the computer; therefore, X E JffR can 
be used instead of Y. 

* We neither require X C X nor use X U X. 
* The computational effort and storage as compared to standard slopes increase 

by about a factor of 2. 
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